

Air Source Heat Pump Best Practices

Types, Tips, & Tricks

STEPHEN TURNER INC. Building Better Performance Energy code technical support

Presenter

Stephen C. Turner PE, LEED AP

President

317 Hope Street Providence, RI 02906 401.273.1935 <u>stephen@sturnerinc.com</u> <u>www.buildingcommissioning.com</u>

Code Compliance Enhancement Initiative

- Free Energy Code Technical Support is available by calling 1-855-343-0105
- The Rhode Island Energy Code Technical Support Initiative aims to:
 - Improve energy conservation code compliance through educating code
 officials and industry professionals
 - Establish higher compliance by offering a competitive stretch code
 - Take on an active role in the policy and advocacy of matters related to energy code

3

RI Energy Rebate

Energy efficiency incentives and rebates continue to be available for New construction and major renovation projects.

Visit https://www.rienergy.com/RI-Business/Energy-Ling Better Saving-Programs/New-Construction-Major-**Renovations**

Your Billing & Sarlety & S	Change Location		Gas Emerge	ncies y Powe	er Outages Our Compan	ly Contact Us Q	
	de Island Energy"		Energy &			ې Sign In / Register	

Home + Ways to Save + Energy Saving Programs + New Construction & Major Renovation

New Construction & Major Renovations

New Construction & Major Renovations

Incentives, ideas and expertise for building energy efficiency into every project.

Everyone is looking for value more than ever these days. We can help you create that value-and long-lasting energy savings-in all your project designs. We can even show you how to offset the incremental construction and design service costs associated with the inclusion of more energy-efficient equipment and systems. Engage with us early (during concept and early schematic design) to take advantage of the widest range of pathways options.

Whether your project is large or small, new construction or major renovation*, Rhode Island Energy offers a range of paths you can take to elevate building performance, comfort, health and, of course, long-term energy savings:

Path 1: Zero Net Energy (ZNE)/Deep Energy Savings

Focuses on design as well as post occupancy energy use intensity (EUI)** outcomes

· Solutions for buildings 20,000 square feet or greater that engage early in schematic design

· Comprehensive technical expertise and financial incentives for zero net energy (ZNE), ZNE ready and very low EUI* projects

Optional Verification Incentive available to measure building EUI post-occupancy.

Path 2: Whole Building EUI Reduction

Focuses on EUI project design outcomes for larger and fairly complex projects

- Solutions for buildings 50,000 square feet or greater that engage before the end of design development.
- · Comprehensive technical expertise and financial incentives for meeting EUI reduction goals.
- · Optional Verification Incentive available to measure building EUI post-occupancy.

Path 3: Whole Building Streamlined

Focuses on energy reduction opportunities for smaller and less complex buildings

- Solutions for buildings between 20,000-100,000 square feet that engage before the end of design development. · Comprehensive technical expertise and financial incentives for non-energy-intensive projects.

Path 4: Systems

Focuses on providing flexible options to support smaller projects and projects that fall outside the Path 1-3 whole building program pathways

· Prescriptive for buildings under 20,000 square feet, partial building major renovations, or projects engaging late in design

Application Forms

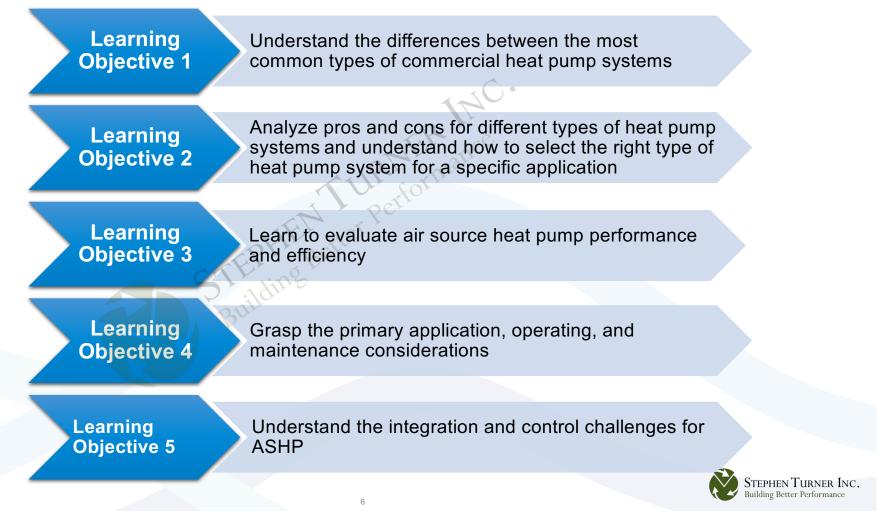
New Construction Program

What path is right for your next project?

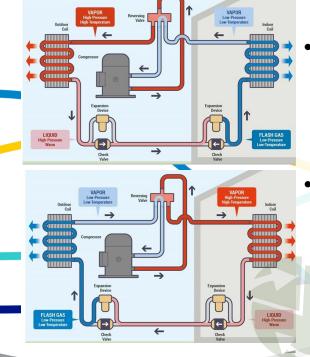
Call to find out:

1-855-RIE-1108

*A major renovation would qualify if the scope is such that occupancy is not possible during construction and where scope includes at least 3 of the following 5 systems: 1) Heating Ventilation and Air Conditioning, 2) Domestic Hot Water, 3) Lighting, 4) Building Envelop, and 5) Process Equipment.


**Energy Use Intensity (EUI) is calculated as kBtu per square foot per year. It is a way to compare the energy use of a building against other and against itself over time

Disclaimer


These trainings are being offered through the support of Rhode Island Energy, and in cooperation with the Rhode Island Building Code Commission. The Energy Code Technical Support staffs are not code officials, and the information provided through the program is not a formal interpretation of the code. Your local code official is responsible for the enforcement of the code and the Rhode Island Building Code Commission is the governing body responsible for interpretations of the code.

Learning Objectives:

Overview of Commercial Heat Pumps

mage source. https://www.hvacrschool.com/wp-content/uploads/2020/11/HP-Svstem.ipa

In cooling mode:

o Use the evaporator to remove heat from a space, airstream, or hydronic circuit

In heating mode: •

- Use the condenser to add heat to a space, airstream, or hydronic circuit
- Depending on whether heat pumps are air or water source, the heat is rejected or derived from the outdoor air or a pumped fluid
- Includes heat of compression in addition to extracted heat from source

Rebates widely available

Electrification reduces renewal of fossil fuel infrastructure

Common types of commercial heat pump systems

Air to Air

- Air source heat pumps reject heat to (cooling mode) or extract heat from (heating) outdoor air
- Utilize refrigerant to either heat or cool the space via the reversing valve
- The reversing valve changes the direction of the refrigerant to either disperse heat or remove heat from the indoor space.
- Air source heat pumps previously were not suited for colder climates, but recent advances has made them more reliable in such climates

Water Source

- Water source heat pumps reject heat to (cooling mode) or extract heat from (heating) a pumped source loop
- May use motorized valves to alter the water flow through the heat pump to change modes
- Can avoid the problems with heating mode associated with low temperature outdoor air
- Can use a variety of water sources, including cooling towers for cooling mode, boilers for heating mode, geothermal loops for both modes, or other water sources

Water to Water

- Water to water heat pumps also reject heat to (cooling mode) or extract heat from (heating) a pumped source loop
- Water to water heat pumps utilize hydronic heating systems to deliver heat to the conditioned spaces
- Typically use motorized valves to alter the water flow through the heat pump to change modes
- Can use the same range of water sources as water source heat pumps

System Types

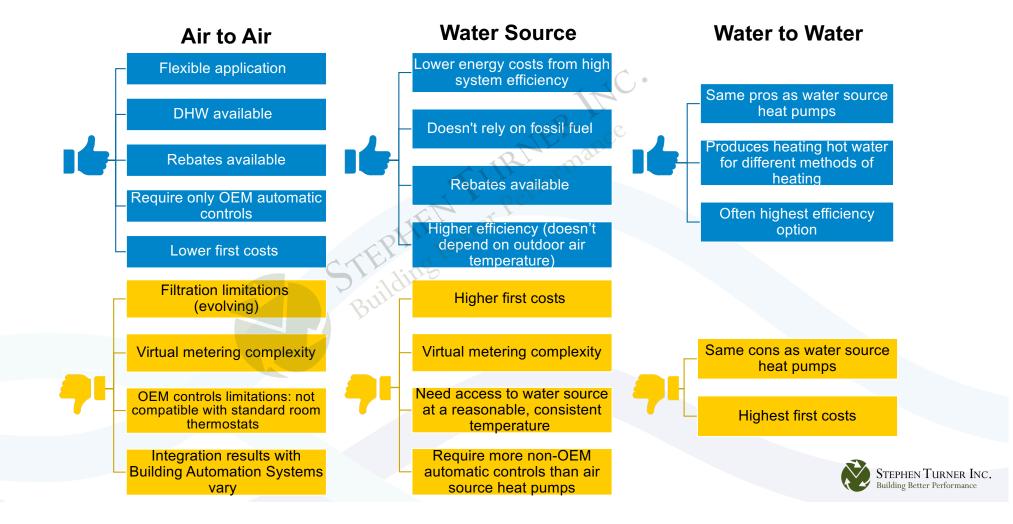
Simple Air-to-Air • VRF Multiplexed VRF Ceiling Cartridge Units Wall Cassette Fan Coil Units Units Water-to-Air • Central or Distributed **Air Handling** Rooftop MUA or Units Units **DOAS Units** Water-to-Water Ground Source Heat Pump

Equipment Types

Domestic Hot Water Heaters

STEPHEN TURNER INC. Building Better Performance

Overview of Commercial Heat Pumps


Additional technologies for enhanced performance in some systems:

- Multiplex several indoor units (often cartridge units) connected to a single outdoor unit (typically air to air systems only)
- Low outdoor temperature, high heating capacity versions of some systems
- Variable Refrigerant Flow (VRF) for continuously modulating capacity control
- Desuperheating coil for dehumidification reheat on air side (air to air or water to air systems only)
- Higher capacity air-side fans in fan coil units and air handling units to handle better air filters
- BACnet compatible controls integration
- Advanced control systems that can include sub-metering modules for tenant-paid utilities

10

Pros and Cons of Each System

Evaluate air source heat pump performance & efficiency

- Air source heat pumps are rated several ways; code requirements are expressed in SEER for small unitary equipment or COP for larger systems
- Other ratings include Heating Seasonal Performance Rating (HSPR), EER, and IEER (Integrated Energy Efficiency Ratio)
- The higher the better (your mileage may vary!)
 - Code requires 14 SEER; EnergyStar requires 16 SEER; VRF units are often rated at 18 SEER or higher
 - Seasonal Energy Efficiency Ratio (SEER): ratio of cooling or heating energy output from a unit in BTU per hour to the power input required to operate the unit in watts, adjusted for seasonal operating conditions and varying loads
 - Coefficient of Performance (COP) is the output divided by the input, where both are expressed in the same units

Primary Unit	Conversion Unit
1 COP	3.5 EER
1 kW/Ton	3.5 COP
12 EER	1 kW/Ton

Current Commercial Code Versions

- SBC-8 RI State Energy Conservation Code
 - SBC-8-2021, adopted in 2022, references the 2018 IECC with RI Amendments
- 2017 RI Stretch Code for Commercial Construction

IECC 2021 TABLE C403.3.2(3) MINIMUM EFFICIENCY REQUIREMENTS

EQUIPMENT TYPE	SIZE CATEGORY	HEADING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE*						
			Split system, three phase and applications outside US single	14.0 SEER before 1/1/2023		ELEC	TRICALLY OPER	TA	BLE C403.3.2(2)—continued UNITARY HEAT PUMPS—MINIMU	M EFFICIENCY REQU	IREMENTS ^{6, d}
Air cooled	< 66.000 Btu/h	All	phase ^b	14.3 SEER2 after 1/1/2023	AHRI 210/240—2017 before 1/1/2023	EQUIPMENT TYPE	SIZE CATEGORY	HEADING SECTION TYPE	SUBCATEGORY OR RATING CONDITION	MINIMUM EFFICIENCY	TEST PROCEDURE*
(cooling mode)			Single package, three phase and applications outside US single phase ^b	14.0 SEER before 1/1/2023 13.4 SEER2 after 1/1/2023 12.0 SEER before	AHRI 210/240—2023 after 1/1/2023	Space	-	NC.	Split system, three phase and applications outside US single phase ^b	7.4 HSPF before 1/1/2023 6.3 HSPF2	AHRI 210/240-2017
Space constrained, air	< 30.000 Btu/h	All	Split system, three phase and applications outside US single phase ^b	1/1/2023 11.7 SEER2 after 1/1/2023	after AHRI 210/240—2017 before 1/1/2023 AHRI 210/240—2023 after 1/1/2023	constrained, air cooled (heating mode)	≤ 30,000 Btu/h	AII -	Single package, three phase and applications outside US single	after 1/1/2023 7.4 HSPF before 1/1/2023	before 1/1/2023 AHRI 210/240—2023 after 1/1/2023
cooled (cool- ing mode)			Single package, three phase and applications outside US single phase ^b	12.0 SEER before 1/1/2023 11.7 SEER2 after 1/1/2023			PV-0		phase ^b	6.3 HSPF2 after 1/1/2023	
Single duct, high velocity, air cooled (cooling mode)	< 65,000	All	Split system, three phase and applications outside US single phase ^b	1/1/2023 12.0 SEER before 1/1/2023 12.0 SEER2 after 1/1/2023	AHRI 210/240—2017 before 1/1/2023 AHRI 210/240—2023 after 1/1/2023	Small duct, high velocity, air cooled (heating mode)	< 65,000 Btu/h		Split system, three phase and applications outside US single phase ^b	7.2 HSPF before 1/1/2023 6.1 HSPF2 after 1/1/2023	AHRI 210/240—2017 before 1/1/2023 AHRI 210/240—2023 after 1/1/2023
(cooning mode)	≥ 65,000 Btu/h and	Electric resistance (or none)		11.0 EER 12.2 IEER before 1/1/2023 14.1 IEER after 1/1/2023		ettert	≥ 65,000 Btu/h and < 135,000 Btu/h	ນັນ 	47°F db/43°F wb outdoor air	3.30 COP _{II} before 1/1/2023 3.40 COP _{II} after 1/1/2023	-
	< 135,000 Btu/h	All other		10.8 EER 12.0 IEER before 1/1/2023 13.9 IEER after	ELine		(cooling capacity)		17°F db/15°F wb outdoor air	2.25 COP _H	
Air cooled (cooling mode)	≥135,000 Btu/h	Electric resistance (or none)		1/1/2023 10.6 EER 11.6 IEER before 1/1/2023 13.5 IEER after 1/1/2023	AHRI 340/360	Air cooled (heating mode)	≥135,000 Btu/h and <240,000 Btu/h (cooling capacity)		47°F db/43°F wb outdoor air	3.20 COP _H before 1/1/2023 3.30 SOP _H	AHRI 340/360
	and < 240,000 Btu/h	All other	Split system and single package	10.4 EER 11.4 IEER before 1/1/2023 13.3 IEER after 1/1/2023					17°F db/15°F wb outdoor air	after 1/1/2023 2.05 COP _H	_
		Electric resistance		9.5 EER 10.6 IEER before 1/1/2023 12.5 IEER after			≥240,000 Btu/h (cooling		47°F db/43°F wb outdoor air	3.20 COP _H	
	≥ 240,000 Btu/h		(or none)	12.5 IEER after 1/1/2023 9.3 EER 10.4 IEER			capacity)		17°F db/15°F wb outdoor air	2.05 COP _{II}	
				before 1/1/2023 12.3 IEER after 1/1/2023							
Air cooled (heating mode)	< 65.000 Btu/h	5.000 Btu/h All	Split system, three phase and applications outside US single phase ^b	applications outside US single							
	~ 03,000 BIUI	A	Single package, three phase and applications outside US single phase ^b	8.0 HSPF before 1/1/2023 6.7 HSPF2 after 1/1/2023	AHRI 210/240-2023 after 1/1/2023	14					STEPHEN TURNEF Building Better Performa

Application Consideration (1 of 2)

- Water source systems may be easier to expand if sufficient capacity is provided
- Seasonal variation in monthly energy use and cost
 - Tenants in multi-family buildings can face peak electric bills in winter
 - If replacing heating-only system, newly available cooling can increase electric use in summer
- Energy and GHG/carbon performance
 - Detailed analysis requires grid fuel mix data
 - Replaces on-site combustion
- Metering and cost assignment (utility & maintenance costs)

Application Consideration (2 of 2)

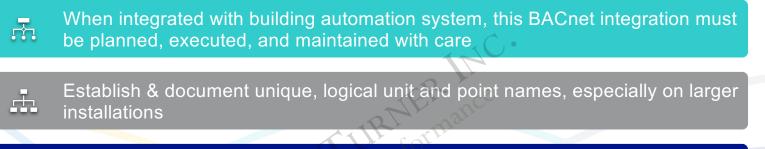
- Central vs. Distributed equipment
 - Central equipment can be air-to-air, water-to-air, or water-to-water
 - Distributed equipment can support sub-metering and utility cost-shifting to tenants
- Refrigerant piping vs. hydronic piping
 - Hydronic piping & water leak risks can be eliminated with air-to-air systems
 - Refrigerant piping requires:
 - Careful documentation of as-built piping for manufacturer to calculate exact refrigerant charge
 - Conscientious nitrogen purging during any brazing/soldering of fittings

Operating Considerations

- Air-to-Air & water source: avoid deep unoccupied setbacks
- Provide neutral mechanical ventilation air independent of heat
 pump cycling
- Use setpoint, deadband or mode lock to reduce winter cooling calls (& vv.)
- Multiplexed systems:
 - Spaces with more than 1 indoor unit controlled from a single thermostat, properly programmed, & lead unit identified
 - Document how simultaneous heating and cooling calls on the same combiner box & outdoor unit are handled
 - Colorized drawings or other records to understand indoor/outdoor unit pairings

17

Maintenance Considerations


- 18" minimum snow stands
- Combiner boxers & indoor units accessible for service
- Indoor units located to minimize condensate lift pumps
 - Provide access to condensate drain piping
- Wireless thermostats tethered to protect against loss where appropriate
- Understand system limitations for air filter pressure drop & select compatible replacements (or regular cleaning for "lint filters")

18

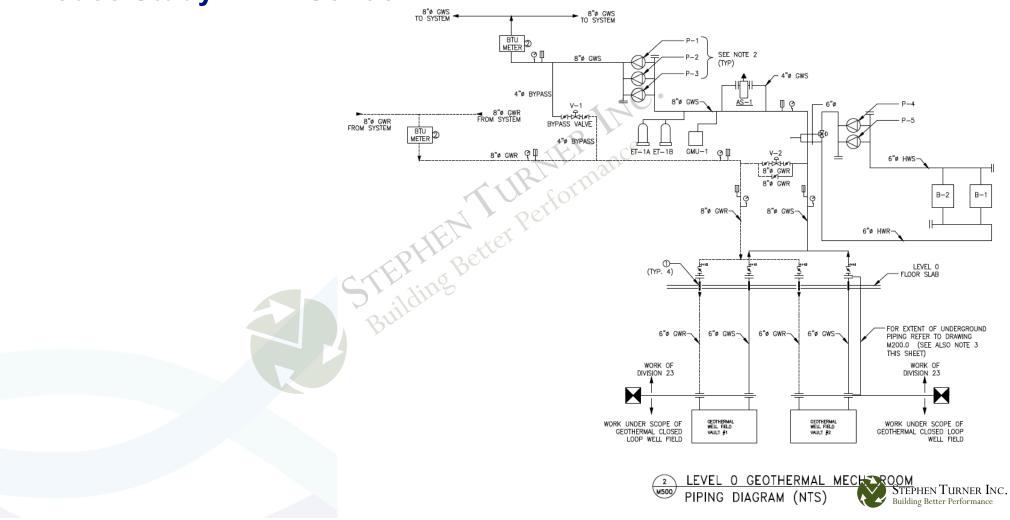
- Air-to-Air Systems:
 - o Adjust defrost cycle settings to address cold draft complaints in heating season
 - Undue compressor failures may indicate refrigerant & oil contamination from improper install

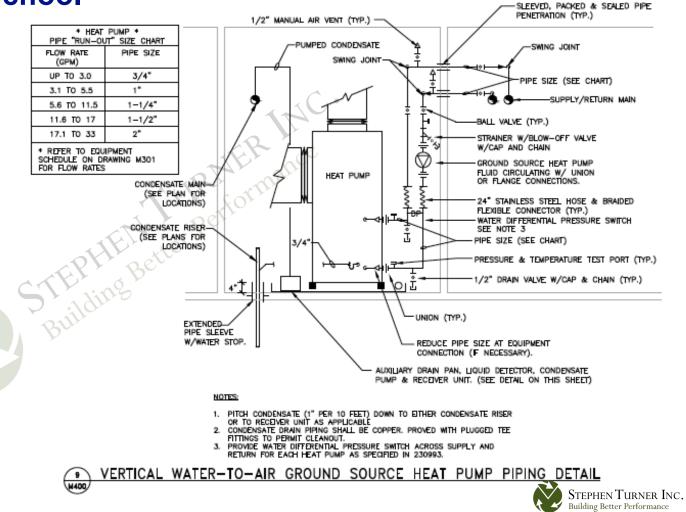
Integration & Control Challengers

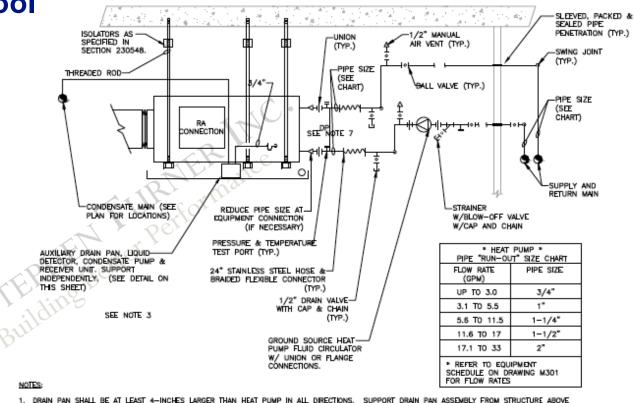
Understand how BACnet commands for mode and setpoint interact with local user commands on OEM thermostats

Plan whether unoccupied schedules will be programmed individually or commanded from the building automation system

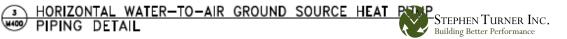
Ensure meaningful graphics, historical trend data, & alarms are provided


Location Use Size Services Certification	Public Educational Facility 159,400 square feet
Project Ov	erview:
concre • Comb	ed on the site of an existing 1971 cast-in-place ete building near Cambridgeport ined kindergarten to fifth-grade lower school, ded sixth to eighth-grade upper school
	s as a model for Cambridge's Net Zero Energy
and the second se	najor project for Cambridge under their Net Zero for municipal buildings
A COM	STEPHEN TURNER INC. Building Better Performance


Ground Source Distributed System:


- 101 water-to-air heat pumps
- Classrooms are equipped with vertical floor mounted heat pumps located in equipment closets accessible from the corridor
- Core workrooms, teacher lounges, and gymnasiums are served by horizontal heat pumps
- Several large DOAS units

- nos
- Geothermal wells supply ground source condenser water routed to the building, serving all heat pumps
- Classroom heat pumps include OEM controls; reversible refrigerant cycle to provide heating & cooling
- DOAS units include energy recovery wheels to provide neutral air to some spaces, others
 provide full heating and cooling
- Dedicated constant speed circulating pumps are utilized for pumping at each heat pump unit.
- Each heat pump is equipped with a trapped condensate drain line, drained to the nearest indirect waste
- Condensate lift pumps where gravity drainage is not possible



- DRAIN PAN SHALL BE AT LEAST 4-INCHES LARGER THAN HEAT PUMP IN ALL DIRECTIONS. SUPPORT DRAIN PAN ASSEMBLY FROM STRUCTURE ABOVE INDEPENDENTLY OF THE HEAT PUMP.
- SUPPORT HEAT PUMP FROM STRUCTURE ABOVE USING THREADED ROD ATTACHED TO MANUFACTURER FURNISHED CONTRACTOR INSTALL BRACKETS (TYP. 6). 3.
- PITCH CONDENSATE (1" PER 10 FEET) DOWN TO EITHER CONDENSATE RISER OR TO RECEIVER UNIT AS APPLICABLE CONDENSATE DRAIN PIPING SHALL BE COPPER, PROVED WITH PLUGGED TEE FITTINGS TO PERMIT CLEANOUT,
- EACH HEAT PUMP SHALL BE PROMDED WITH BOTH A SUPPLY AND RETURN AIR SOUND ATTENUATORS. REFER TO PLANS FOR TYPE OF ATTENUATOR 5. (ELBOW OR STRAIGHT) AND EFFECTIVE LENGTH.
- PROVIDE WITH SEISMIC BRACING AS SPECIFIED.
- 7. PROMDE WATER DIFFERENTIAL PRESSURE SWITCH ACROSS SUPPLY AND RETURN FOR EACH HEAT PUMP AS SPECIFIED IN 230993.

Case Study- King Open School

LocationCambridge, MAUseEducation & Community SpaceSize273,000 square feetServicesLEED Fundamental & Enhanced CommissioningCertificationLEED v4 BD+C Silver and Net Zero goal

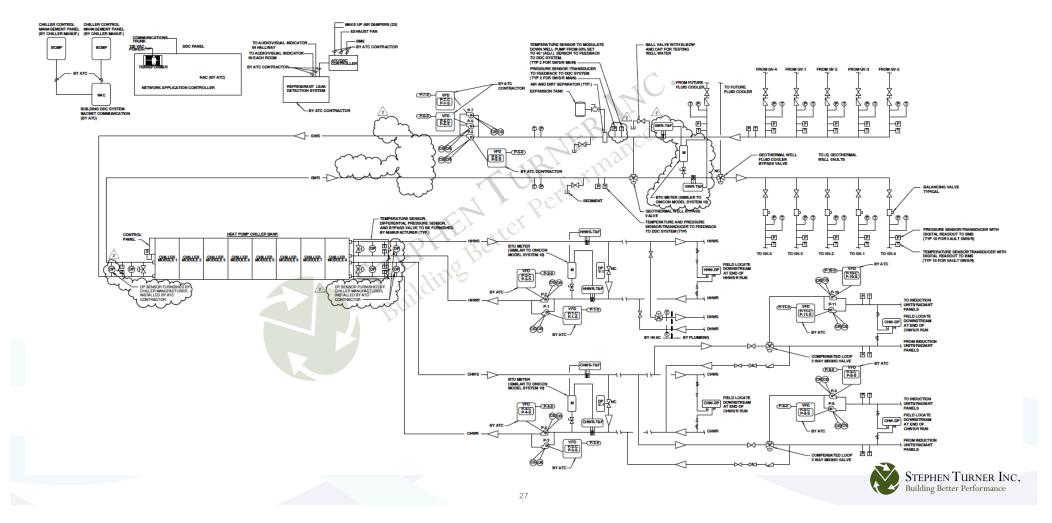
Project Overview:

- Location: Existing site of a 1971 cast-in-place concrete building.
- School Structure: Combined kindergarten through fifth-grade lower school and expanded sixth through eighth-grade upper school.
- Model for Cambridge's Net Zero Energy school aspirations.
- Extensive sustainability features: geothermal, photovoltaic, and energy recovery systems.
- Advocated for Net Zero goals and ensured at least LEED for Schools Silver certification.

Case Study- King Open

Geothermal Heating and Cooling Plant:

- Fully Hydronic Distribution
- Heating and cooling by central geothermal plant consisting of eight 85-ton water-to-water heat pump chillers.
 - These heat pump modules serve the facility, providing hot water, chilled water, and heat recovery


- These modules can operate in heating mode, cooling mode, or heat recovery mode based on the building's requirements
- The system is supplied with ground source condenser water from 190 closed loop geothermal wells, organized into 38 circuits with 5 bores per circuit
- Ground loop circuit manifolds are situated in 5 separate vaults, each connected to the building via 6" supply and return piping

26

- A master controller determines building-side loads and controls the staging of central waterto-water heat pump modules on or off, with plans to add a redundant master controller
- The modules are equipped with scroll compressors, two independent refrigerant circuits each for heat recovery, and use R410A refrigerant

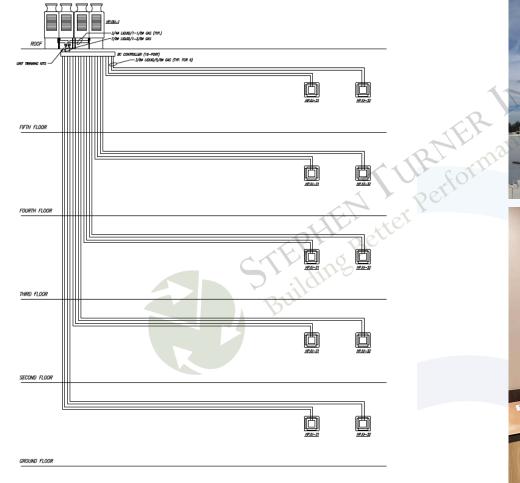
Case Study- King Open

LocationProvidence, RIUseBrown University DormitorySize80,590SF & 50,490SF

Project Overview:

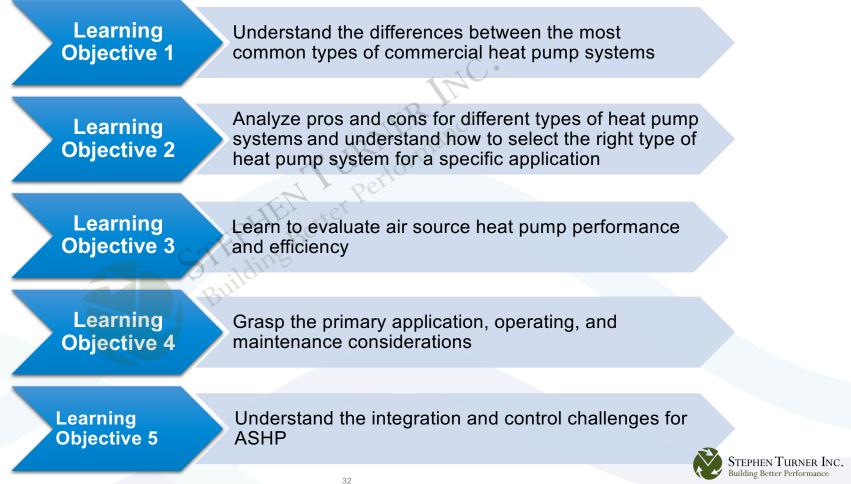
- The Brook Street Residence Halls project aimed to achieve the United States Green Building Council's (USGBC's) Leadership in Energy and Environmental Design (LEED) version 4 silver rating for New Construction.
- This aligns with Brown University's sustainability strategy, focusing on reducing greenhouse gas emissions by eliminating fossil fuel use and cutting energy usage to 25-50% below state code requirements.
- On-site fossil fuel burning is excluded from consideration for this project, emphasizing a commitment to limiting environmental impact.

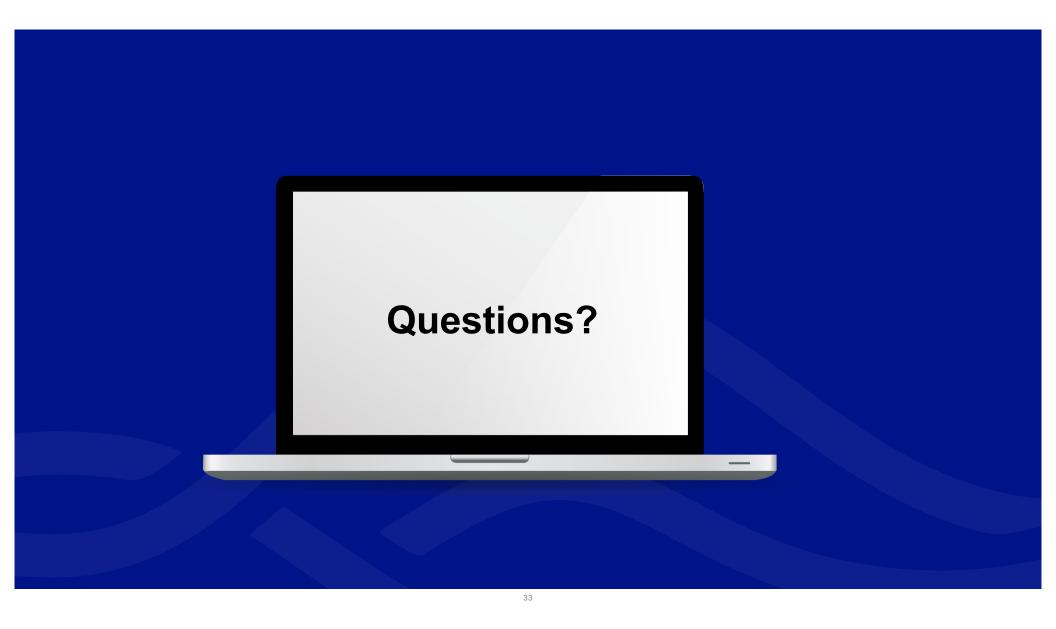
Heat Pump Types and Locations:


- Air Source Multiplexed
- Outdoor air units located on the roof

Heat Pump Components and Functionality:

- Spilt system
 - Heating
 - Reheat
 - o Cooling




SYSTEM HP.OU-1 WITH CONNECTED INDOOR UNITS

FLOOR	ROOM #		HP INDOOR UNITS	HP OUTDOOR UNIT	BRANCH CONTROLLER	ADDRESS	PROPOSED EQUIP. TAG FOR HP INDOOR UNIT	UNIT SENSOR (ZN-T, RZN-T, RA-T) BEING USED FOR THE HEATING / COOLING CONTROL	EBB	UH/CUH	EF / RTERV EXH
1	100	LOBBY	HPI-100			CC-1.13	OU-3.HPI-100	•			
1	100A	LOBBY LOUNGE					The		EBB-3 (3)		
1	100A	CORRIDOR (NORTH)									RTERV-2 EXHAUST
1	100B	ELEVATOR LOBBY									
1	100C	VESTIBULE								CUH-2	
1	100D	CORRIDOR (SOUTH)]1			RTERV-1 EXHAUST
1	101	WATER SERVICE / HWH								UH-2	RTERV-2 EXHAUST
1	101A	PUMP ROOM							EBB-1		RTERV-2 EXHAUST
1	102	ELECTRICAL	TCHP.IU-3		A A A	CC-2.33	TCHP.OU-3.IU-3				
1	103A	W.C.							EBB-1		RTERV-2 EXHAUST
1	103B	W.C.							EBB-1		RTERV-2 EXHAUST
1	104	ELECTRICAL EM ROOM									EF-2
1	105	TRASH								UH-1	RTERV-2 EXHAUST
1	106	ELECTRICAL GENERATOR ROOM		5.10							
1	107	MEETING ROOM MD	HPI-107			CC-1.14	OU-3.HPI-107		EBB-3		
1	109	CREATIVE SPACE	HPI-109			CC-1.15	OU-3.HPI-109		EBB-3 (2)		
1	111	SUITE LIVING	HPI-111			CC-2.22	OU-10.HPI-111				
1	111A	BED									
1	111B	BED									
1	111C	BATH					(RTERV-1 EXHAUST
1	112	RES LIFE SUITE	HPI-112			CC-2.21	OU-10.HPI-112				
1	112A	BED									
1	112B	BED									
1	112C	BATH									RTERV-1 EXHAUST
1	113	KITCHEN	HPI-113			CC-2.20	OU-10.HPI-113				RTERV-1 EXHAUST
1	114	SUITE LIVING	HPI-114			CC-2.19	OU-10.HPI-114				

Heat Pump – Summary

